Distinguish Musical Symbol Printed using the Linear Discriminant Analysis LDA and Similarity Scale

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest-Instance-Centroid-Estimation Linear Discriminant Analysis (NICE LDA)

We propose a novel ensemble classification technique called the Nearest Instance Centroid Estimation (NICE) LDA algorithm. Our algorithm (inspired from NICE KLMS) performs a combination of two weak classifiers threshold based clustering and linear discriminant classification to achieve stateof-the-art results on various high dimensional UCI datasets. We discuss the important ways in which our m...

متن کامل

2D-LDA: A statistical linear discriminant analysis for image matrix

This paper proposes an innovative algorithm named 2D-LDA, which directly extracts the proper features from image matrices based on Fisher s Linear Discriminant Analysis. We experimentally compare 2D-LDA to other feature extraction methods, such as 2D-PCA, Eigenfaces and Fisherfaces. And 2D-LDA achieves the best performance. 2004 Elsevier B.V. All rights reserved.

متن کامل

Face recognition using adaptive margin fisher's criterion and linear discriminant analysis (AMFC-LDA)

Selecting a low dimensional feature subspace from thousands of features is a key phenomenon for optimal classification. Linear Discriminant Analysis (LDA) is a basic well recognized supervised classifier that is effectively employed for classification. However, two problems arise in intra class during discriminant analysis. Firstly, in training phase the number of samples in intra class is smal...

متن کامل

1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based?

1 School of Mathematics and Computation Science Sun Yat-sen University Guangzhou, P. R. China, [email protected] 2 Department of Electronics & Communication Engineering, School of Information Science & Technology Sun Yat-sen University Guangzhou, P. R. China, [email protected] 3 Guangdong Province Key Laboratory of Information Security, P. R. China 4 Center for Biometrics and Security Rese...

متن کامل

Classification Using Linear Discriminant Analysis and Quadratic Discriminant Analysis

2 Classification of One-Dimensional Data 2 2.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Building the LDA Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 Results of One-Dimensional LDA Classification . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Quadratic Discriminant Analysis . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Applications

سال: 2018

ISSN: 0975-8887

DOI: 10.5120/ijca2018917236